Groups of Positive Weighted Deficiency and Their Applications
نویسنده
چکیده
In this paper we introduce the concept of weighted deficiency for abstract and pro-p groups and study groups of positive weighted deficiency which generalize Golod-Shafarevich groups. In order to study weighted deficiency we introduce weighted versions of the notions of rank for groups and index for subgroups and establish weighted analogues of several classical results in combinatorial group theory, including the Schreier index formula. Two main applications of groups of positive weighted deficiency are given. First we construct infinite finitely generated residually finite p-torsion groups in which every finitely generated subgroup is either finite or of finite index – these groups can be thought of as residually finite analogues of Tarski monsters. Second we develop a new method for constructing just-infinite groups (abstract or pro-p) with prescribed properties; in particular, we show that graded group algebras of just-infinite groups can have exponential growth. We also prove that every group of positive weighted deficiency has a hereditarily just-infinite quotient. This disproves a conjecture of Boston on the structure of quotients of certain Galois groups and solves Problem 15.18 from Kourovka notebook.
منابع مشابه
Groups of Positive Weighted Deficiency and Their Applications
In this paper we introduce the concept of weighted deficiency for abstract and pro-p groups and study groups of positive weighted deficiency which generalize Golod-Shafarevich groups. In order to study weighted deficiency we introduce weighted versions of the notions of rank for groups and index for subgroups and establish weighted analogues of several classical results in combinatorial group t...
متن کاملOrdered Weighted Averaging Operators and their Generalizations with Applications in Decision Making
The definition of ordered weighted averaging (OWA) operators and their applications in decision making are reviewed. Also, some generalizations of OWA operators are studied and then, the notion of 2-symmetric OWA operators is introduced. These generalizations are illustrated by some examples.
متن کاملSOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS AND THEIR APPLICATIONS
In this work, we shall present some novel process to measure the similarity between picture fuzzy sets. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity measures between picture fuzzy sets, such as, cosine similarity measure, weighted cosine similarity measure, set-theoretic similar...
متن کاملHesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making
The aim of this manuscript is to present a new concept of hesitant q-rung orthopair fuzzy sets (Hq-ROFSs) by combining the concept of the q-ROFSs as well as Hesitant fuzzy sets. The proposed concept is the generalization of the fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and Pythagorean fuzzy sets as well as intuitionistic hesitant fuzzy sets (IHFSs) and hesitant Pythagorean fuz...
متن کاملOn the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کامل